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Foundations of the Wentzel-Kramers-Brillouin approximation
for models of cochlear mechanics in 1- and 2-D

Brian L. Frosta)

Department of Electrical Engineering, Columbia University, 500 West 120th Street, Mudd 1310, New York, New York 10027, USA

The Wentzel-Kramers-Brillouin (WKB) approximation is frequently used to explore the mechanics of the cochlea.

As opposed to numerical strategies, the WKB approximation facilitates analysis of model results through

interpretable closed-form equations and can be implemented with relative ease. As a result, it has maintained rele-

vance in the study of cochlear mechanics for half of a century. Over this time, it has been employed to study a vari-

ety of phenomena, including the limits of frequency tuning, active displacement amplification within the organ of

Corti, feedforward mechanisms in the cochlea, and otoacoustic emissions. Despite this ubiquity, it is challenging to

find rigorous exposition of the WKB approximation’s formulation, derivation, and implementation in cochlear

mechanics literature. In this tutorial, the foundations of the WKB approximation are discussed in application to mod-

els of one- and two-dimensional cochlear macromechanics. This includes mathematical background, rigorous deriva-

tion and details of its implementation in software. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Models of one- (1-D) and two-dimensional (2-D) mac-

romechanics have offered some of the most significant inter-

pretations of cochlear physiology, historic and modern. It is

intuitive that three-dimensional (3-D) models should offer

more physically realistic results than 2-D or 1-D models, but

this alone implies a “more the merrier” view of model

dimensionality that coincides with quantitative accuracy but

not with frequency of implementation or impact on the field

of cochlear mechanics.

Important results of 1-D models include the existence

and character of stapes-driven traveling waves and the pres-

ence of a region of negative damping,1–7 as well as intraco-

chlear reflections and otoacoustic emissions (OAEs).5,8–15

Qualitative similarity across frequency/space and quantita-

tive similarity in the long-wave region to in vivo cochlear

responses make 1-D models attractive for the exploration of

fundamental macromechanical phenomena. Implementation

and modification of the dynamics to account for featuresa)Email: b.frost@columbia.edu
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such as nonlinearity and roughness are also far simpler in 1-

D models than in 2-D or 3-D models.10–13

On the other hand, 2-D models allow for more physical

results in the short-wave and cutoff regions of the cochlear

response than 1-D models,16–21 allowing for more complete

exploration of potential mode-coupling phenomena in the

traveling wave.22–24 Moreover, 2-D models are able to cap-

ture fluid mechanical properties in the scalae, which allows

for interpretation of energy flow,25–27 or the manner by

which pressure across the scalae is focused at the organ of

Corti complex (OCC) to supply energy to the traveling

wave,28–31 whereas 1-D models describe only the average

pressure across the scalae.32,33

The macromechanics of the cochlea are generally mod-

eled as boundary value problems (BVPs), where the model

equations involve partial differential equations (PDEs) with-

out analytically known solutions, such as the Navier-Stokes

equation. Such model equations can be tackled using

numerics (e.g., the finite element method) or by making suf-

ficient simplifying assumptions such that approximate ana-

lytic solutions can be found—the scala walls are rigid, the

fluids are incompressible, etc.

Techniques based on the Wentzel-Kramers-Brillouin

(WKB) approximation, also known as the Liouville-Green

(LG) approximation,34–38 were introduced to the field of

cochlear mechanics by Zweig and are among the most popular

for achieving approximate, explicit closed-form solutions for

OCC motion, fluid pressure, and fluid velocity in a variety of

cochlear models that match numerical solutions well across

broad frequency and spatial ranges.4,5,9,21,28–31,39–41 Closed-

form explicit solutions allow for more easily interpreted model

results. While exact solutions have been derived and studied

for some cochlear models, e.g., implicit Green’s function solu-

tions17,18,42 or explicit Fourier transform solutions for box

models,43 they are not as simple to qualitatively analyze.

As a nonexhaustive list, 1-D and 2-D WKB approxi-

mate solutions have offered: interpretations of limits on

cochlear tuning,4 interpretations of intracochlear reflections

and OAEs,10–13,15,31,44 interpretations of traveling wave

mode coupling,22–24 and interpretations of the impact of

active power generation in the cochlea.29,30 These approxi-

mations can also be applied to accelerate computations in

more complex 3-D cochlear models (e.g., Ref. 45)

Robustness, ease of implementation, interpretability, and

versatility have earned the WKB approximation its persis-

tence in macromechanics modeling over half of a century.

With the passage of time, foundations of WKB techni-

ques have largely disappeared from cochlear mechanics lit-

erature; as with any historical method, derivations,

assumptions, implementation details, and the implications

thereof have become implicit. This efficiency is useful for

experienced readers but creates confusion for newer entrants

to the field. In the case of WKB, not only are these objects

often missing in contemporary literature, they are challeng-

ing to find in historic literature as well.

The relevance of the WKB approximation in cochlear

models, historical and contemporary, owes it a foundational

exposition. Fundamental understanding of the approxima-

tion can open the door to adaptations for probing particular

questions with knowledge of its strengths and limitations.

As such questions continue to arise with the publication of

new data, especially with the advent of optical coherence

tomography, this is all the more relevant.

Last, the recent passing of Egbert de Boer, Hendrikus

Duifhuis, and Charles Steele—three pioneers of the applica-

tion of the WKB approximation to cochlear mechanics—

suggests a timeliness of such a presentation.

The essence of this tutorial is to present the fundamen-

tals of WKB techniques in linear 1-D and 2-D cochlear

mechanics models from an analytic perspective, covering

derivations and details of implementation and performance.

I begin by describing general mathematical details of

the WKB approximation agnostic to cochlear applications.

This is followed by a description of the 1-D and 2-D BVPs

for the box model of the cochlea. Derivations of the 1-D and

2-D WKB solutions to these BVPs follow. I then discuss the

theory of the WKB traveling wave subspace (in terms of

“WKB basis functions”) most often used in the study of

intracochlear reflections and OAEs.

For readers interested in implementation rather than

theory, Sec. VII discusses practical concerns. This includes

discussion of several common methods for solving the dis-

persion relation for 2-D box models, along with details of

their performance across frequency and spatial ranges. This

is followed by a comparison across methods and numerical

solutions.

II. THE WKB APPROXIMATION

In this section, I will present the mathematical under-

pinnings of the WKB approximation. These abstract con-

cepts will be applied to cochlear mechanics models

specifically in Secs. III–VIII.

Consider a homogeneous linear nth-order ordinary dif-

ferential equation (ODE) of the form

�
dny

dx
þ an�1ðxÞ

dn�1y

dxn�1
þ � � � þ a1ðxÞ

dy

dx
þ a0ðxÞy ¼ 0; (1)

where the coefficient functions ai, i ¼ 1; 2;…; n� 1, are n-

times continuously differentiable functions on some interval

I � R, and � 2 R is presumed to be small relative to the

magnitudes of the other coefficient functions. The coeffi-

cient functions may be complex valued.

Consider an ansatz for a solution to Eq. (1) as the expo-

nential of a formal power series in d 2 R,

yðxÞ ¼ exp
1

d

X1
m¼0

dmCmðxÞ
" #

; (2)

where Cm, m ¼ 0; 1; 2;…, are n-times continuously differ-

entiable functions on I, and it is assumed that the series can

be differentiated term-wise.34,35,37,38,46 For the series to con-

verge,47 d should be small and Cm and their derivatives must
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fall off exponentially in magnitude across the real line with

increasing m. That is,

jdmCmþ1ðxÞj � jdm�1CmðxÞj; m ¼ 0; 1; 2;…: (3)

The ansatz, when plugged into Eq. (1), yields a differ-

ential equation containing infinitely many unknowns, Cm.

The Mth-order WKB approximation is made by truncating

this series up to the Mth term. This is valid so long as all

terms at indices higher than M are much smaller than one on

I. That is,

jdMCMþ1ðxÞj � 1: (4)

It is common that the first-order WKB approximation is sim-

ply called “the WKB approximate solution.”36

III. COCHLEAR MODEL

The WKB approximation can be applied to any

cochlear model described by linear differential equations. In

this tutorial, the focus is on one popular class of models—

box and tapered box models—with geometry as displayed in

Fig. 1. The model is derived by considering the cochlea as

uncoiled and containing two scalae—scala vestibuli (SV)

and scala tympani (ST).48,49 The scalae are separated by an

infinitesimally thin plate, where the flexible OCC is the only

portion of this plate capable of movement.

The cochlea’s longitudinal axis (x) points toward the

apex, terminating at the stapes at x¼ 0 and the helicotrema at

x¼L. The transverse axis (z) points toward SV with the OCC

lying at z¼ 0. The cross-sectional areas of SV and ST are

equal to one another50 and vary along the longitudinal axis as

S(x). The OCC width varies along the longitudinal axis as b(x).

This model simplifies to the common box model when the

scala walls are not curved and S(x) and b(x) are constant.

The model can be flattened to a 2-D model as is repre-

sented geometrically in Fig. 1. This flattening amounts to

representation of each quantity as its average over the radial

dimension. It appears as a tapered box with height

hðxÞ ¼ SðxÞ=bðxÞ. Further flattening of the model to a 1-D

model involves representation of all quantities as being only

dependent on x. This amounts to averaging quantities over

transverse space.

A. Boundary conditions and assumptions

The boundary conditions are determined based on the fol-

lowing assumptions: (1) fluid does not flow in the normal

direction toward or out of the scalae at the walls z ¼ 6h and

helicotrema x¼ L, (2) the average pressure at x¼ 0 is some

known constant POW, and (3) the OCC is mechanically

described by a longitudinally varying point impedance, ZOCðxÞ
(or reciprocally as a point admittance YOC ¼ 1=ZOC).51 This

quantity is complex and frequency dependent.

It should be noted that the modeled pressure and veloc-

ity will vary sinusoidally. Assuming linearity of the

model,11,41,52–54 inputs at a given radian frequency, x, will

yield model responses at the same frequency. That is, all

quantities will be of the form Cðx; z;xÞejxt. The time-

dependence is identical across all quantities and, therefore,

it will generally be left implicit.

The fluid pressure is denoted by P(x,z), the longitudinal

fluid velocity is denoted by _uðx; zÞ, and the transverse fluid

velocity is denoted by _wðx; zÞ. The impedance describes the

relationship between transmembrane pressure and transverse

displacement at z¼ 0. Due to the symmetry of the model,

transmembrane pressure p ¼ 2P.

In the 2-D tapered box model, the boundary conditions

can be written as

1

hð0Þ

ðhð0Þ

0

Pð0; zÞ dz ¼ POW ; (5)

@P

@x
ðL; zÞ ¼ 0; (6)

@P

@z
ðx; hðxÞÞ ¼ 0; (7)

Pðx; 0Þ ¼ � ZOCðxÞ
2

_wðx; 0Þ; (8)

where the negative sign in the impedance relation comes

from positive pressure in SV applying a –z-direction

FIG. 1. (Color online) (A) Geometry

of the 3-D box model, having length L,

scala height h, and width b is shown.

The longitudinal, radial, and transverse

directions are x, y, and z, respectively.

(B) Geometry of the corresponding 2-

D box model is displayed. In the

tapered box model, h may be a func-

tion of x. SV, scala vestibuli; ST, scala

tympani; OW, oval window.
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(downward) force on the OCC. These boundary conditions

are equally valid in the 1-D model simply by ignoring

dependence on z.

An assumption is also made regarding the character of

the traveling wave solutions. With the input pressure appear-

ing at the stapes, the traveling wave will primarily travel

toward the apex. In this text, these will be referred to as api-
cal-traveling waves. At the helicotrema, reflection will

occur and a wave traveling toward the stapes will be gener-

ated. Here, such waves will be referred to as basal-traveling
waves.

For the most part, I will assume that basal-traveling

waves are far smaller than apical-traveling waves. In some

models, this is achieved by letting L!1, in which case

the WKB solutions will be identical to those arrived at in

this tutorial. Basal-traveling waves will be considered in the

context of WKB basis functions (Sec. VI), and this assump-

tion will be removed.

B. Model equations

With the geometry described, the model equations can

now be developed. The fluid in the scalae is modeled as

incompressible, irrotational, linear, and inviscid. The fluid

velocity vector, v ¼ ð _u _wÞT , in a volume satisfies the conti-

nuity equation, which is given by

@q
@t
þr � ðqvÞ ¼ 0; (9)

where q is the fluid density. This represents that within a dif-

ferential volume, the change in fluid mass in the region is

accompanied by an equal and opposite divergence of that

fluid into/out of the region.

In an incompressible fluid, the mass of the fluid (and,

thereby q) in any region is constant, simplifying the equa-

tion to

r � v ¼ 0: (10)

An irrotational field is also a conservative field, thus, the

velocity field can be written as the gradient of some scalar

field, /. This velocity potential is thereby defined by

r/ ¼ v: (11)

Taking the divergence of both sides and applying Eq.

(10) yields the Laplace equation in velocity potential:

r2/ ¼ 0: (12)

The Navier-Stokes equation in an inviscid, incompressible,

linear, and irrotational fluid is

q
@v

@t
þrP ¼ q

@r/
@t
þrP ¼ 0: (13)

This gives

P ¼ �q _/; (14)

where the overhead dot indicates a partial derivative in time.

Taking the Laplacian of both sides and recalling that / satis-

fies the Laplace equation, we arrive at a Laplace equation in

P such that

r2P ¼ 0: (15)

The Laplace equation then also holds for transmembrane

pressure, p ¼ 2P.

Another model equation can be derived for the average
pressure in a cross section, i.e., for the 1-D model in which

pressure and velocity depend only on x. Over a small longi-

tudinal cross section from x to xþ d, transverse fluid dis-

placement occurs at a rate of approximately dbðxÞ _wðxÞ, as

transverse fluid motion is generated only by the motion of

the OCC, and dbðxÞ is the approximate area of the OCC in

this range.

Longitudinally, fluid enters the region at rate SðxÞ _uðxÞ
and exits at rate Sðxþ dÞ _uðxþ dÞ. Exiting fluid must be the

sum of entering fluid and fluid displaced by transverse OCC

motion:

Sðxþ dÞ _uðxþ dÞ ¼ SðxÞ _uðxÞ þ dbðxÞ _wðxÞ:

This can be manipulated into the form of a difference

quotient,

Sðxþ dÞ _uðxþ dÞ � SðxÞ _uðxÞ
d

¼ bðxÞ _wðxÞ:

Letting d! 0, the left-hand side is recognized as a deriva-

tive in x:

@

@x
S _u½ � ¼ b _w: (16)

This identity can be used to arrive at a differential

equation in pressure. This begins with simplifying the

Navier-Stokes equation [Eq. (13)] to a 1-D equation, mul-

tiplying it by the cross-sectional area and differentiating in

x such that

@

@x
S
@P

@x

� �
þ q

@

@x
S
@ _u

@t

� �
¼ 0; (17)

where I have used the fact that _u ¼ @/=@x.

Replacing the time derivative by-product with jx and

applying Eq. (16) results in

@

@x
S
@P

@x

� �
þ jxqb _w ¼ 0: (18)

To write this entirely in terms of transmembrane pressure, p,

I can use p ¼ 2P and the 1-D model’s point-impedance

boundary condition, p ¼ �ZOC _w. Doing so and dividing by

S gives the Webster horn equation for the 1-D model:
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1

S

@

@x
S
@p

@x

� �
þ k2p ¼ 0; (19)

k2ðxÞ ¼ �2jxq
ZOCðxÞhðxÞ

: (20)

This derivation can be readily modified to apply to the

2-D model as well—one replaces the 1-D model’s longitudi-

nal velocity, _u, and pressure, P, with those of the 2-D model

averaged across the transverse dimension and replaces the

1-D model’s transverse velocity, _w, with that of the 2-D

model at z¼ 0. The derivation holds identically until the

final step. In the 2-D model, the boundary condition is that

transverse OCC velocity is related to the pressure at z¼ 0,

not the average pressure. Writing the average pressure as �P
(or �p ¼ 2 �P), the pressure focusing factor is defined as

aðxÞ ¼ pðx; 0Þ
�pðxÞ ; (21)

which is the ratio between the pressure focused at the OCC

and average transmembrane pressure in the cross section.

The 2-D model Webster horn equation is then

1

S

@

@x
S
@�p

@x

� �
þ k2

2D �p ¼ 0; (22)

k2
2DðxÞ ¼

�2jxqaðxÞ
ZOCðxÞhðxÞ

: (23)

In the box model where S is constant, Eqs. (19) and 22

degenerate to wave equations with variable wavenumbers,

and Eqs. (20) and 23 are dispersion relations.

IV. WKB SOLUTIONS FOR THE 1-D MODEL

The Webster horn equation [Eq. (19)] was studied in

the context of cochlear mechanics models as early as 1950.3

For general values of k(x), the PDE may not have a simple

closed-form analytic solution, but approximations such as

constant k and simple forms for S can be used to yield

explicit solutions.3 In the box model, where this simplifies

to a wave/transmission line equation with varying wave-

number, an explicit solution is guaranteed but only in terms

of retarded Green’s functions.17,18,55,56 This motivates the

development of a closed-form, explicit approximate

solution.

The WKB approximate solution for the horn equa-

tion57–59 can be considered by placing the equation into the

standard form of a linear differential equation:

@2p

@x2
þ S0

S

@p

@x
þ k2p ¼ 0; (24)

where “:�” denotes the spatial derivative. Comparing with

Eq. (1), we have �¼ 1.

Putting in the WKB ansatz [Eq. (2)] with d ¼ � ¼ 1

gives

exp
X1
m¼0

Cm

 ! X1
m¼0

C00mþ
X1
m¼0

C0m

 !2

þS0

S

X1
m¼0

C0mþk2

2
4

3
5¼0:

(25)

As the exponential term is never zero and leads every term,

I can divide through by it. I choose to keep only terms

involving C0 and C1. By the asymptotic assumptions of the

WKB approximation, C1 � C0, the terms should decrease

as further derivatives are taken such that C001 and ðC01Þ
2

are

negligible in comparison to lower-order terms. This results

in

C000 þ ðC00Þ
2 þ 2C00C01 þ

S0

S
ðC00 þ C01Þ ¼ �k2: (26)

To arrive at approximate solutions, even further simpli-

fying assumptions must be made. At first, these simplifica-

tions may appear as “hand waving” for the sake of

mathematical convenience, but they will be kept track of

and analyzed at the end of this section.

The most stringent approximation made in these deriva-

tions is the strong area assumption,���� S0S C00

����� jC00j2; (27)

an assumption about the physical parameters of the system

that can be interrogated once a first approximation of C0 has

been found. This is trivially true in a box model no matter

what the value of C0 is, as in this case S0 ¼ 0.

A consequence of this strong area assumption is the

weak area assumption,���� S0S C01

�����
���� S0S C00

����� jC00j2; (28)

which is justified by the asymptotic assumptions on the

WKB series. Application of this weak area assumption to

Eq. (26) gives the first-order WKB ODE:

C000 þ ðC00Þ
2 þ 2C00C01 þ

S0

S
C00 ¼ �k2: (29)

To obtain the zeroth-order WKB ODE, I perform a fur-

ther reduction based on the same asymptotic decay assump-

tions. First, I make the second derivative assumption,

jC000j � jC00j
2; (30)

such that I am justified in ignoring the first summand of Eq.

(29). Also ignoring the remaining first-order term of 2C00C01
and applying the strong area assumption, Eq. (29) reduces to

C00
� �2 ¼ �k2: (31)

With Eqs. (31) and 29, zeroth- and first-order WKB approxi-

mations for the 1-D model can be found.
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A. The zeroth-order solution

The ODE in Eq. (31) is quickly solved by taking the

square root of both sides and integrating:

C0 ¼ 6j

ðx

0

kðnÞ dn: (32)

Plugging into the WKB ansatz, the zeroth-order solution is

p0ðxÞ ¼ Ae
�j
Ð x

0
kðnÞ dn þ Be

j
Ð x

0
kðnÞ dn

; A;B 2 C: (33)

This is recognized as a superposition of two traveling waves

with the first summand traveling toward the apex and the sec-

ond summand traveling toward the base. As stated in Sec.

III A, the basal-traveling waves caused by reflection at the heli-

cotrema are modeled as being negligible, thus, B¼ 0.

Application of the boundary condition at the oval win-

dow [Eq. (5)] with B¼ 0 gives A ¼ POW . The zeroth-order

solution is then

p0ðxÞ ¼ POWe
�j
Ð x

0
kðnÞ dn

: (34)

B. The first-order solution

Putting in the value for C0 found in Eq. (32) to the first-

order WKB approximate ODE of Eq. (29), I have

6jk0 � k2 6 2jkC01 6
S0

S
jk ¼ �k2:

Solving for C01 results in

C01 ¼ �
k0

2k
� S0

2S
; (35)

and integrating both sides,

C1 ¼ �
1

2
log ðSkÞ: (36)

Plugging the found values of C0 and C1 into the WKB

ansatz gives the first-order WKB approximate solution,

p1ðxÞ ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðxÞkðxÞ
p e

�j
Ð x

0
kðnÞ dn þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðxÞkðxÞ
p e

j
Ð x

0
kðnÞ dn

;

A;B 2 C: (37)

Once again, B¼ 0 by the assumption that basal-traveling

waves are negligible. A is found by applying the boundary

condition at the oval window and writing Sð0Þ ¼ S0; kð0Þ
¼ k0 such that

p1ðxÞ ¼ POW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0k0

SðxÞkðxÞ

s
e
�j
Ð x

0
kðnÞ dn

: (38)

In the box model, as Sð0Þ ¼ SðxÞ for all x, the ratio inside

the square root simplifies to k0=kðxÞ.

Equations (34) and (38) are explicit formulas for pres-

sure in terms of model parameters, geometry and wavenum-

ber, found through density, frequency, and impedance [Eq.

(20)]. Having solved for pressure, velocity of the OCC in

the 1-D model can be determined simply by dividing by the

negative of the impedance.

C. The slowly varying parameter approximation

The term WKB assumption is often used to refer to the

assumption that the wavenumber varies slowly in space rela-

tive to its own magnitude.4,5 However, the derivation above

for first- and second-order WKB approximations never

explicitly made this assumption. Where is the relationship

between these two ideas?

For the WKB method to be valid, the terms Cn in the

series must decrease monotonically. In particular,

jC1j � jC0j. Using the box model case for the sake of sim-

plicity (no dependence on S), consider this relationship with

the values of C0 and C1 from the 1-D model derived above,����� 1

2
ln k

�����
����j
ðx

0

kðnÞ dn

����: (39)

The left-hand expression can also be written as an inte-

gral from zero to x, and pulling out the constant-modulus

factors gives

1

2

����
ðx

0

k0ðnÞ
kðnÞ dn

�����
����
ðx

0

kðnÞ dn

����: (40)

This relationship is satisfied if k satisfies

jk0j � jkj2: (41)

That is, the assumption of slow-varying k implies that the

WKB approximation is reasonable. This can also be recog-

nized as the second derivative assumption [Eq. (30)] made

above in the derivation of the zeroth-order WKB ODE.

With the dependence of k on the scala height and the

impedance at the OCC [Eq. (20)], its rate of change is

related to those of all of the model parameters. Thus,

WKB assumption: The parameters of the model vary
slowly relative to their magnitudes.

When these conditions are not met, the WKB approxi-

mation breaks down. It is important to keep this assumption

in mind when observing modeled responses.

Consideration of asymptotic behavior of the cochlea’s

traveling wave in light of Eq. (41) is instructive. At positions

far basal to the best place, the response is said to be in the

long-wave region. Here, the wavenumber varies slowly in

space, therefore, the left-hand term in Eq. (41) is very small.

At positions near the best place, the wavelength

becomes smaller (wavenumber becomes larger) and changes

more rapidly in space. This is known as the short-wave
region. Here, the right-hand term in Eq. (41) is very large.

J. Acoust. Soc. Am. 155 (1), January 2024 Brian L. Frost 363

https://doi.org/10.1121/10.0024355

 29 August 2024 18:34:30

https://doi.org/10.1121/10.0024355


In balance, this assumption may be satisfied across a large

portion of the frequency range.

On the other hand, reasonable smooth values for imped-

ance will lead to quickly varying k around the region where

stiffness and mass terms of the impedance cancel [see the

dispersion relation of Eq. (20)]. In lossless cases, this leads

to an infinite admittance and with small resistance still

yields rapidly varying k.

D. The strong area assumption and the cochlear
catastrophe

Further interrogation of the strong area assumption of

Eq. (27) is in order as it also regards the spatial variation of

model parameters. Under the first approximation for C0 [Eq.

(32)], the assumption becomes���� S0S
����� jkj: (42)

This assumption appears to be challenged at the base, where

jS0=Sj may be large as scala area varies approximately

exponentially.60

The presence of the wavenumber in this rewritten

strong area assumption implies that there must be some bal-

ance between k and S to maintain the validity of the WKB

approximation across the length of the cochlea.

Reciprocally, appearance of the flattened scala height, h, in

the formula for the wavenumber [Eq. (20)] implies that the

derivative of scala area also impacts the WKB assumption

for wavenumber variation in Eq. (41). Zweig and Shera dis-

cuss the implications of this balancing act between geome-

try and OCC impedance in detail and refer to the failure of

models to account for this as the “cochlear catastrophe.”6 It

is worth noting, however, that this catastrophe is only sig-

nificant in the base in response to very low-frequency stim-

uli, hence, box models without tapering reasonably satisfy

the WKB approximation across most of space and

frequency.

V. WKB SOLUTIONS FOR THE 2-D MODEL

There are a number of methods for arriving at WKB

approximate solutions for the 2-D model. The first solution

presented in this tutorial is chosen because of its emphasis

of the relationship between the 1-D and 2-D models. Under

the assumptions of the model (see Sec. III), transmembrane

pressure satisfies the 2-D Laplace equation such that

@2p

@x2
þ @

2p

@z2
¼ 0: (43)

One classical method for solving the Laplace equation is

separation of variables, where it is assumed that the trans-

membrane pressure can be written as a product of a function

of only x and a function of only z:

pðx; zÞ ¼ XðxÞZðzÞ:

If separation of variables were satisfied, the solution

would be a linear combination of eigenfunctions with eigen-

value k. These are of the forms

pk ¼ ðA cosh kxþ B cosh kxÞðCejkz þ De�jkzÞ; (44)

pk ¼ ðAejkx þ Be�jkxÞðC cosh kzþ D sinh kzÞ: (45)

We know that the x-dependence of the solution should have

the form of a wave, therefore, Z should have the hyperbolic

trigonometric form observed in Eq. (45):

ZðzÞ ¼ C cosh kzþ D sinh kz:

Plugging in the boundary condition at the outer wall

[Eq. (7)] gives

Z0ðhÞ ¼ k C sinh khþ D cosh kh½ � ¼ 0;

yielding the relationship C ¼ �D=tanh kh. A hyperbolic

trigonometric identity results in

ZðzÞ ¼ D

sinh kh
ðsinh kh sinh kx� cosh kh cosh kxÞ

¼ �D

sinh kh
cosh kðz� hÞ½ �: (46)

Separation of variables has already been broken as h
depends on x, but this nonetheless gives motivation for writ-

ing the form of the solution as

pðx; zÞ ¼ cosh kðz� hÞ½ �XðxÞ;

where k may also vary in x. In this form, the solution satis-

fies the boundary condition at the outer wall.

Here, I will make the first of two WKB approximations

by assuming that (1) the form of X is that of Eq. (2) with

d¼ 1, and (2) the WKB assumption (parameters vary slowly

in x relative to their own magnitudes) holds such that x-

derivatives of cosh½kðz� hÞ� are small. The Laplace equa-

tion to zeroth-order becomes

C2
0cosh kðz� hÞ½ �XðxÞ þ k2cosh kðz� hÞ½ �XðxÞ ¼ 0;

where the second term is the second z-derivative of p. Just

as in the 1-D case, this gives

C0 ¼ 6j

ðx

0

kðnÞ dn:

Assuming that the basal-traveling wave is negligible, the

pressure is

pðx; zÞ ¼ AðxÞcosh kðz� hÞ½ �e�j
Ð x

0
kðnÞ dn

; (47)

where A(x) is some unknown function.

A dispersion relation is still needed so that k can be

solved for. To do this, recall the boundary condition at z¼ 0

[Eq. (8)]. Pressure and velocity potential are related by
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p ¼ �2qjx/ [Eq. (14)], therefore, their first derivatives in z
give

_w ¼ �1

2qjx
@p

@z
;

or by plugging in Eq. (47),

_w ¼ �1

2qjx
AðxÞk sinh kðz� hÞ½ �e�j

Ð x

0
kðnÞ dn

: (48)

At z¼ 0, the ratio of velocity and pressure is the nega-

tive of the OCC admittance, �YOC. That is,

�YOC ¼
�1

2jxq
�AðxÞk sinh kh½ �e�j

Ð x

0
kðnÞ dn

AðxÞcosh kh½ �e�j
Ð x

0
kðnÞ dn

¼ k tanh kh½ �
2jxq

;

giving the dispersion relation

k tanh kh ¼ �2jxqYOC: (49)

This dispersion relation61 is transcendental and does not

possess a unique solution for k (the implications of this will

be covered in detail in Sec. VII). Equation (49) is also inde-

pendent of A, meaning that it will be valid for any approxi-

mation of p in the form of Eq. (47).

Solving Eq. (49) for impedance gives

ZOC ¼ jx
�2q

k tanh kh
:

This allows for an attractive interpretation of the impact of

the impedance on the traveling wave. Due to the leading jx,

this appears similar to a mass. In particular, defining the

effective height of the fluid as

heðkÞ ¼
1

k tanh kh
; ZOC ¼ �2jxqhe; (50)

the impedance at the OCC is that of a column of fluid with this

effective height. It should be noted that while this analogy is

useful, this “mass” and “height” are generally complex valued

and only approximately real at lower frequencies (see discus-

sion of the long-wave solution in Sec. V C).

A. Pressure focusing

To determine A(x) in Eq. (47), recall that the average
pressure in the 2-D model must satisfy the Webster horn

equation [Eq. (22)]. The average pressure is

�pðxÞ ¼ 1

hðxÞ

ðhðxÞ

0

AðxÞcosh kðz� hÞ½ �e�j
Ð x

0
kðnÞ dn

dz

¼ 1

kðxÞhðxÞAðxÞsinh kðxÞhðxÞ½ �e�j
Ð x

0
kðnÞ dn

: (51)

The pressure focusing factor, a ¼ pðx; 0Þ=�pðxÞ, is

required to find k2D in Eq. (23) and can now be found using

Eq. (47):

aðxÞ ¼ kðxÞhðxÞ
tanh kðxÞhðxÞ½ � : (52)

This is independent of A, which means that it will be valid

for any p in the form of Eq. (47).

Plugging this into Eq. (23), k2
2D can be found to be

k2
2D ¼

�2jxYOCqkh

h tanh kh½ �
;

but by Eq. (49), this simplifies directly to

k2
2D ¼ k2:

In Sec. IV, zeroth- and first-order WKB approximations for

solutions to the Webster horn equation were derived. This

gives an approximate formula for average pressure by

directly copying Eq. (38):

�pðxÞ ¼ POW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0k0

SðxÞkðxÞ

s
e
�j
Ð x

0
kðnÞ dn

: (53)

Equating this with the earlier expression for �p in Eq. (51), it

is possible to solve for A(x):

AðxÞ ¼ POW
kðxÞhðxÞ

sinh kðxÞhðxÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0k0

SðxÞkðxÞ

s
: (54)

Finally, after this second application of a WKB approx-

imation, a 2-D equation for pressure has been derived:

pðx; zÞ ¼ POW
kðxÞhðxÞ

sinh kðxÞhðxÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0k0

SðxÞkðxÞ

s

� cosh kðxÞðz� hðxÞÞ½ �e�j
Ð x

0
kðnÞ dn

: (55)

In conjunction with the dispersion relation of Eq. (49), this

allows solution for pressure or velocity throughout the scala.

B. A higher-order 2-D approximation

The above derivation arrives at Eq. (55) through two

consecutive applications of the WKB approximation and

neatly piggy-backs off of 1-D results for average pressure.

However, this formula is not the only solution referred to in

the literature as “the WKB solution” for a 2-D model.

Various alternate approximation methods arrive at the

following equation for pressure in a box model:

pðx; zÞ ¼ POW
k0h

cosh kðxÞh½ �tanh k0h½ �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh k0h½ � þ k0h sech2 k0h½ �

tanh kðxÞh½ � þ kðxÞh sech2 kðxÞh½ �

s

� cosh kðxÞðz� hÞ½ �e�j
Ð x

0
kðnÞ dn

(56)

(e.g., Refs. 21, 27, and 28). It is clear that this has the form

of Eq. (47), which means that this solution shares the same
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effective height, dispersion relation, and pressure focus-

ing factor as the solution derived above [Eqs. (49), (50),

and (52)].

One derivation of this formula involves the solution for

p as a formal power series approximation,21 inspired by the

physics of surface waves.62 It is informative but lengthy,

and an outline can be found in the Appendix. A second deri-

vation of this formula follows from considering the Euler-

Lagrange equations in a lossless box model (i.e., ZOC purely

imaginary).27 Neither derivation explicitly relies on the

WKB approximation, although they do rely on the WKB

assumption and feature the characteristic WKB phase term

(the integral of the wavenumber). Intricate treatments of

both derivations can be found online.78

Although Eq. (56) behaves similarly to Eq. (55), its

responses match numerical solutions better in the peak

region. On the other hand, Eq. (56) only holds for box mod-

els where h is constant and does not allow for the modeling

of cochlear tapering. Contemporary work is largely partial

to the lower-order approximation of Eq. 55.29–31,41,63

Differences in the behaviors between these solutions will be

discussed in Sec. VIII.

C. Long- and short-wave solutions

It is also instructive to consider the behavior of the solu-

tion in the long-wave (small k, basal to best place/lower fre-

quency than best frequency) and short-wave (large k, near

best place/best frequency) limits.3,16,64,65 These approxima-

tions lie in the limiting behavior of the hyperbolic tangent

for real argument a 2 R: tanh a � a if a is small and

tanh a � 1 if a is large.

The dispersion relations [Eq. (49)] in the long-wave and

short-wave limits are, respectively,

k2
lw ¼

�2jxq
ZOCh

; (57)

ksw ¼ �2jxqYOC: (58)

These are explicit solutions for the wavenumber in these

regions, simplifying computation. Notably, klw is precisely the

wavenumber from the 1-D Webster horn equation [Eq. (20)].

Considering the same limiting behavior for the pressure

focusing factor [Eq. (52)] gives

alw ¼ 1; (59)

asw ¼ kh: (60)

This reinforces the realization that the long-wave approxi-

mation and 1-D solution are equivalent at z¼ 0. The effec-

tive height from Eq. (50) also has corresponding long- and

short-wave approximations such that

he;lw ¼
1

hk2
; (61)

he;sw ¼
1

k
: (62)

To visualize the differences between the long-wave,

short-wave, and WKB approximations, one can observe the

effective height as k varies. Figure 2 shows he for the three

solutions across various values of positive real k with

h¼ 1 mm. It can be observed that the WKB solution for he

exhibits a continuous switch-off between the long- and

short-wave approximations near the point where these solu-

tions intersect. Behaviors of long- and short-wave velocity

responses are discussed in Sec. VIII.

VI. THE WKB TRAVELING WAVE SUBSPACE

Sections IV and V described derivations of explicit

equations for pressure in 1-D or 2-D tapered box models via

the WKB approximation. These formulas are valid where

the model parameters do not change rapidly relative to their

magnitudes and basal-traveling waves are negligible.

However, WKB approximate solutions may not be easily

derived for other cochlear models.

Numerical solutions, although more accurate to the

dynamics, are generally challenging to interpret in comparison

to WKB approximate solutions. This problem arises in, for

example, the study of reflections in cochlear models—with

only a numerical solution, how does one separate components

of the response that are caused by incident waves from those

resulting from reflected waves? This same breakdown may

also be challenging in solving alternate cochlear models featur-

ing, for example, nonlinearity. It is in this context that the the-

ory of cochlear basis functions was developed.10

Consider a solution to a 1-D or 2-D cochlear model that

describes the pressure at the OCC in response to a single-

frequency stimulus. This is an infinite-dimensional object,

living in the Hilbert space, H, of smooth functions mapping

from I ¼ ½0; L� (the interval of R along which the OCC is

modeled to span) to C.

Whereas the set of exact solutions is a subset of this

infinite-dimensional space, they will likely have qualita-
tively similar traveling wave forms for various perturbations

FIG. 2. (Color online) Effective height as a function of real k for the long-

wave and short-wave approximations, alongside the 2-D WKB solution.

The scala height, h, is set to 1 mm.
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to parameters and boundary conditions. Thus, they are likely to

be well-approximated as living in a lower-dimensional subspace

containing functions that resemble cochlear traveling waves.

This motivates the concept of a traveling wave subspace.

A. Theory of basis wave projection

In a pioneering work, Shera and Zweig introduce sev-

eral sets of basis functions that generate a traveling wave

subspace, including the WKB basis functions.10 I will

develop the 1-D box model WKB basis, but the method is

just as well extended to other approximate solutions. This

specification is for the sake of simplicity and because 1-D

box model WKB basis functions are the most commonly

observed in the literature.10–15,44

By Eq. (38) with constant cross-sectional area, the

apical-traveling wave is proportional to

Wþ ¼
ffiffiffi
1

k

r
e
�j
Ð x

0
kðnÞ dn

: (63)

The basal-traveling wave has been ignored thus far in this tuto-

rial. However, Eq. (37) implies that the form of the WKB

approximate solution for the basal-traveling wave would differ

from Wþ only by the sign in the exponential. I define

W� ¼
ffiffiffi
1

k

r
e

j
Ð x

0
kðnÞ dn

; x 2 I: (64)

The set b ¼ fWþ;W�g � H is linearly independent,

and its span,W ¼ spanðbÞ, is a 2-D subspace of H, which I

will refer to as the WKB wave-space. Any function, p 2 W,

can be written in terms of its apical-traveling (pþ) and

basal-traveling (p�) components as

pðxÞ ¼ pþðxÞ þ p�ðxÞ ¼ wþWþðxÞ þ w�W�ðxÞ; x 2 I;

(65)

where the coefficients w6 are complex-valued constants.

One can form a system of two equations in two varia-

bles by differentiating either side such that

@p

@x
¼ wþ

@Wþ
@x
þ w�

@W�
@x

: (66)

Solution for the coefficients is neatly written in terms of the

Wronskian of b,10,12,66 which is

D ¼ det
Wþ W�
W0þ W0�

� 	
¼ 2j: (67)

With the Wronskian, the projections onto each basis func-

tion can be written as

p6 ¼ P6 p½ � ¼ w6W6

¼ 6W6

D
@W7

@x
�W7

@

@x

� 	
p

¼ 1

2
16

jk0

2k2
6

j

k

@

@x

� 	
p; (68)

where P6 represents the operators projecting functions in H
onto W6.67,68

Of course, any exact solution to the BVP will not live in

W, hence, the values for w6 found through this formula will

not be constant. Thus, the projections are merely approxima-

tions that are best if the derivatives of w6 are sufficiently

small.69

Having these projection operators, one can formulate a

numerical method for determining the apical- and basal-

traveling components of any pressure waveform by imple-

menting derivatives as finite differences. The same process

can be followed for other basis functions of approximate

solutions, such as the short-wave solutions, long-wave solu-

tions, or WKB solutions in a tapered box model.

B. Applications to intracochlear reflections

One natural application of the projection described

above is the study of reflections in the cochlea. The basal

(þ) and apical (–) reflection coefficients can be defined as

R6ðxÞ ¼
p7ðxÞ
p6ðxÞ

: (69)

In a model of the cochlea in which fluid pressure is driven at the

stapes, a “perfectly efficient” cochlea would reflect no energy in

the basal direction (this is assumed in the derivations of Secs. IV

and V) and Rþ would be zero. In a cochlear model that exhibits

some inefficiency, this will be a spatially varying complex-

valued quantity. Some reasonable sources of such reflections

include roughness in the OCC impedance or nonlinearity.

Conversely, one can consider how basal-traveling

waves reflect toward the apex via R�. With a passive

cochlea driven at the stapes, this represents “reflections of

reflections.” However, it is interesting to consider models

where the cochlea is driven from a point along the length of

the OCC (x 6¼ 0).8,10,11 This could correspond to mechanical

energy sources along the length of the OCC, present in the

electromotile outer hair cells, which are likely responsible

for many forms of OAEs.

Given that OAEs are measurable when the cochlea is

driven at the stapes, there must be some significant portion of

energy traveling toward the base without being entirely

reflected. Some early modeling work on this topic predicted

that the apical reflection coefficient is very large compared to

the basal reflection coefficient (R� 	 Rþ) such that basal-

traveling energy would be significantly reflected before arriv-

ing back at the stapes.8,9 In this formulation, OAEs would

have very low magnitudes. It was later argued by Shera and

Zweig that the sizes of these quantities are highly dependent

on the boundary conditions of the model10—an important

result to keep in mind for the modeling of OAEs.

C. Nonhomogeneous models and WKB solutions
as a fundamental set

The WKB basis functions may also be used as an ana-

lytic tool in finding approximate solutions to related
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cochlear models. Once again, I will specify to 1-D box mod-

els with constant area. Starting with Eq. (19), the dynamics

are governed by a wave equation with spatially varying

wavenumber,

d2p

dx2
þ k2ðxÞp ¼ 0; (70)

where I have replaced the partial derivatives with ordinary

derivatives as time-dependence is implicit. This is a second-

order linear homogeneous ODE for which W6 are approximate,

linearly independent solutions. If they were truly solutions,

b ¼ fWþ;W�g would form a fundamental set for this ODE,

and its general solution would be given by Eq. (65).

A corresponding nonhomogeneous ODE to Eq. (70) is

given by

d2p

dx2
þ k2ðxÞp ¼ gðxÞ; (71)

where g is some nonzero function defined on I, which is

known as the forcing function. Equation (70) is the comple-
mentary equation (or associated homogeneous equation) for

this nonhomogeneous ODE. The theory of linear ODEs tells

us that the general solution to Eq. (71), pgen, can be written

as the sum of the general solution to the complementary

equation, pc, and any particular solution to Eq. (71), pp.70

That is,

pgen ¼ pc þ pp:

The complementary solution, pc, is a linear combination

of the functions in the complementary equation’s fundamen-

tal set, which can be approximated by the set of WKB solu-

tions, b. That is,

pc � aþWþ þ a�W�; a6 2 C: (72)

The theory of variation of parameters70 then gives a particu-

lar solution in terms of the functions in the fundamental set

and the forcing function,

pp ¼
W�
D

ðx

0

WþðnÞgðnÞ dn�Wþ
D

ðx

0

W�ðnÞgðnÞ dn;

where D is, once again, the Wronskian of the WKB func-

tions that was already found to be 2j in Eq. (67).

This results in an approximate closed-form general

solution for Eq. (71):

pgen ¼ aþ �
1

2j

ðx

0

W�ðnÞgðnÞ dn

� �
Wþ

þ a� þ
1

2j

ðx

0

WþðnÞgðnÞ dn

� �
W�

¼ pþWþ þ p�W�: (73)

The values of a6 are found through the boundary condi-

tions. In particular, if a known pressure is applied at the

stapes (x¼ 0), creating an initial apical-traveling wave, we

would have aþ ¼ p0 (known constant) and a� ¼ 0. This

gives the parameter-free closed-form solution for the stapes-

driven nonhomogeneous 1-D model as

p ¼ p0 �
1

2j

ðx

0

W�ðnÞgðnÞ dn

� �
Wþ

þ 1

2j

ðx

0

WþðnÞgðnÞ dn

� �
W�: (74)

This formulation has broad applications in the modeling

of intracochlear reflections and OAEs, where model equa-

tions can be manipulated into the form of Eq. (71) (see Refs.

11 and 12). In these cases, the forcing function, g, will gen-

erally represent sources of reflections such as random per-

turbations in impedance or nonlinearity. This interpretation

is visible in Eq. (74), where g can be thought of as a kernel

in the integral of the basis function traveling in the opposite

direction of that for which it is a coefficient. That is, the size

of the apical-traveling component is modulated by the

basal-traveling wave weighted by g and vice versa.

In Sec. VI B, I discussed the application of projection

onto WKB waves to approximating local reflection phenom-

ena [Eq. (69)]. The application is natural in this analytic

treatment as well given the p6 values in Eq. (73).

D. Example: Analytic treatment of roughness

There are various applications of WKB basis functions

to the study of cochlear phenomena (several described in

Refs. 11 and 12). In particular, values of g can be formulated

to study sources of reflection, including nonlinear phenom-

ena (e.g., distortion product OAEs). Here, I will provide a

representative and important example—that of applying

roughness to the cochlea’s parameters.

Much work has been performed regarding the study of

the impact of roughness on the impedance in generating

intracochlear reflections.11–15,44 That is, if the smooth

impedance, Zs, were modified by a small longitudinally

varying perturbation,

ZðxÞ ¼ ZsðxÞ þ dZðxÞ;

this would impact the wavenumber of the traveling waves in

both directions [Eq. (20) in 1-D and Eq. (49) in 2-D]. One

could also model this as a roughening of the wavenumber,

where the smooth wavenumber would be ks and the rough-

ened (squared) wavenumber would be

k2ðxÞ ¼ k2
s ðxÞ þ dk2ðxÞ:

For example, dk2ðxÞ may be modeled as samples from inde-

pendent identically distributed normal distributions at each

x. The roughness could also be designed to depend on stimu-

lus frequency, but this dependence will be left implicit as it

will not impact the derivations.

Rewriting the wave equation in terms of the roughened

wavenumber, we have
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d2p

dx2
þ k2

s ðxÞ þ dk2ðxÞ

 �

p ¼ 0;

which is, in fact, homogeneous and linear. However, dk2 is

not necessarily differentiable—in fact, it ought not be

because “rough” implies non-smooth. This precludes use of

the WKB approximation in its current form as the WKB

assumption [Eq. (41)] is not well posed.

Moving the dk2 term to the opposite side gives

d2pr

dx2
þ k2

s ðxÞp ¼ �dk2p;

which is still homogeneous as the right-hand side is propor-

tional to the dependent variable, p. The strategy is to

approximate the right-hand side as a p-independent forcing

function. If dk2 is small, we can consider this right-hand

term as a perturbation to the otherwise smooth, complemen-

tary response, pc, of Eq. (72). In the case that an apical-

traveling wave of magnitude p0 is induced at the stapes, this

results in the approximation

�dk2p � �dk2p0Wþ:

This is a known p-independent function, allowing the ODE

to be interpreted as approximately nonhomogeneous.

That is, it is in the form of Eq. (71) with

g ¼ �dk2p0Wþ. The roughened pressure solution can be

given by substituting this forcing function for g in Eq. (74):

p ¼ p0 1þ 1

2j

ðx

0

dk2ðnÞWþðnÞW�ðnÞ dn

� �
Wþ

� p0

1

2j

ðx

0

dk2ðnÞW2
þðnÞ dn

� �
W�: (75)

This solution facilitates computation of the reflection coeffi-

cients through Eq. (69) in terms of the roughness function.71

VII. IMPLEMENTATION: SOLVING THE DISPERSION
RELATION

In Secs. II–VI, I have described theoretical underpin-

nings for WKB solutions to 1-D and 2-D box and tapered

box models. In this section, I discuss the challenges

involved in implementation of the derived model equations

in software.

The 1-D model poses no such difficulty as the WKB

pressure equation and dispersion relation are explicit and in

terms of elementary functions, but the dispersion relation of

Eq. (49) presents a challenge in the 2-D case. This relation

is transcendental and, generally, has infinitely many solu-

tions for k in the complex plane. To standardize the lan-

guage, the solution for k is reframed as a root-finding

problem for the function

f ðzÞ ¼ z tanh z� C; (76)

where

z ¼ kh; C ¼ �2qhjxYOC: (77)

At each position and frequency, solutions will exist for

multiple values for k, but we will select only the most signif-

icant of such modes.72 As the velocity is loosely of the form

e�jkx, the solution should possess a positive real part to cor-

respond to an apical-traveling wave. As for the imaginary

part, this leads to either dampening or amplification of the

solution in x. Exponential growth is not physical in a passive

cochlea, meaning that the imaginary part must be negative

and the solution for k must lie in the fourth quadrant of the

complex plane.

Moreover, of the solutions in this quadrant, the solution

with the smallest (in magnitude) imaginary part is desired.

A more negative imaginary part would lead to more severe

exponential damping, therefore, the most significant solution

has the least such damping.

In this section, I discuss the properties of the roots of f
and the challenges that come in solving for physically rea-

sonable roots. I, then, describe in detail three algorithms for

finding k. The performance of these algorithms is discussed

in Sec. VIII.

A. Root loci

Because the function f is continuous, a small variation

of C should yield a small variation of the root position. Each

continuous path traced by the roots with increasing x is

called a root locus. With realistic impedance functions, the

root loci form arcs in the fourth quadrant, traveling from the

positive real axis to negative imaginary axis with increasing

x.73 Fig. 3 shows four such root loci under one set of

FIG. 3. (Color online) Root loci for f(z) in response to four stimulus fre-

quencies using parameters from Steele and Taber (Ref. 27; see Table I). For

a single color, the most basal position corresponds to the smallest real root.

As x increases in 7 lm increments, the root traverses a clockwise arc in the

fourth quadrant, eventually arriving at the negative imaginary axis.

J. Acoust. Soc. Am. 155 (1), January 2024 Brian L. Frost 369

https://doi.org/10.1121/10.0024355

 29 August 2024 18:34:30

https://doi.org/10.1121/10.0024355


parameters, where each color corresponds to a different

stimulus frequency and each circle is a root at a different x
position (x-resolution is 7 lm). As x increases, the locus

diverges from the real line and traverses clockwise toward

the negative imaginary axis. At higher frequencies, the arc

is broader and arrives at a larger negative imaginary value.

The WKB assumption is that this variation of k in x is

slow such that tracing the continuous arc through the plane

(possible with a fine enough resolution in x) would give the

root of interest. However, with physically realistic parame-

ters, one runs into multiple issues just past the peak region.

In particular, near the location where stiffness and mass of

ZOC cancel [Eq. (82) and Table I], the admittance factor of

C varies rapidly. Here, the WKB assumption breaks down,

and a tracing of the root locus shows a rapid traversal of the

arc near these positions. This can be observed in Fig. 3,

where the roots appear sparse along the broad arc of the

locus, indicating a much faster change in k than at the denser

regions near the real and imaginary axes. In this region,

insufficient resolution in x could not capture the continuous

but rapid arc of the root locus and may, instead, yield con-

vergence to a root in a different locus. This issue can be

resolved either by uniformly refining resolution or refining

resolution close to the resonant position.21

B. Continuous longitudinally stepping algorithm

The goal is to begin by tracing a single root locus for f
through the complex plane. Due to the number of possible

roots at a given x, canonical root-finding methods can cause

trouble. Such methods require an intelligently chosen start-

ing point so as not to converge to the wrong root or even a

saddle point.

In this section, I will describe a class of algorithms for

root-finding that step across the longitudinal axis at each

point, making an estimate for k informed by the estimate

from the previous step.21,73 Here, x values are quantized into

an N-length vector with resolution Dx. I will write the esti-

mate for k at position xn as k̂n; n ¼ 1; 2;…;N. As the

function f is itself x dependent, I will write f ðz; xnÞ to refer

to f at each position.

Starting at the very base, we are likely to be in the long-

wave region. This motivates the initial approximation of

k̂1 ¼ klwðx1Þ. This can be used as the initial value in a stan-

dard root-finding algorithm such as Newton-Raphson or the

Muller method, which are likely to converge to the correct

root.

Stepping further along in x, the long-wave approxima-

tion becomes poor. This indicates that we should not use

this initial value forever. As in Fig. 3, wavenumbers within

a single locus at subsequent x locations are likely close to

one another—that is, kn � knþ1. The intuitive estimate is to

use the solution at xn, k̂n, as the starting point for the root-

finding method at xnþ1 to find k̂nþ1.

Pseudocode for this algorithm using the Newton-

Raphson method in z to compute the wavenumber is pre-

sented in Algorithm 1. The Newton-Raphson method

requires the derivative of f, which is given by

f 0ðzÞ ¼ tanh zþ z sech2z: (78)

Recall that z¼ kh.

This works so long as k is slowly varying, which is pre-

cisely the WKB assumption. However, there is a significant

problem that occurs near the resonant point where stiffness

and mass cancel, creating a rapid change in k (see the sparse

regions of the arcs in Fig. 3).74 If we were to ignore this fea-

ture, we would simply follow the continuous root locus as in

Fig. 3, tending toward solutions for k with large negative

imaginary parts. This leads to falloff in the magnitude

response that is far more rapid than what is observed in basi-

lar membrane displacement data.27,75

This rapid falloff past the peak is a result of a poor

selection for k. In particular, the roots along the continuous

locus do not correspond to dominant modes once their imag-

inary parts become sufficiently negative. Methods have been

developed to counteract this problem by considering a con-

tinuous switch-off between dominance of two modes22–24 or

discretely swapping the root locus being followed near the

resonant position.20,21 An example of the latter type is dis-

cussed in Sec. VII C.

ALGORITHM 1. Naive longitudinally stepping root-finding algorithm to

determine the wavenumber at N different x positions using the Newton-

Raphson method.

k̂ ic  klwðx1Þ � Initialize using long-wave k

for n ¼ 1! N do

z hk̂ic

� N is the number of steps in x space

for m ¼ 1! M do

z z� f ðz;xnÞ
f 0ðz;xnÞ

� M is the number of

Newton-Raphson iterations

end for

k̂n  z=h
k̂ ic  kn

� Initial value for next step is current guess for k

end for

TABLE I. Parameters used in all simulations. Physical parameters are taken

from Steele and Taber (Ref. 27).

Parameter Symbol Value

Mass m 1:5� 10�3 g/mm2

Resistance r 2� 10�6 Ns/mm3

Stiffness s(x) 10e�0:2x N/mm3

Scala height h 1 mm

Cochlea length L 35 mm

Fluid density q 10�3 g/mm3

Threshold on k finite difference T 0.02 mm�2

Iterations of Newton’s method

(Algorithms 1 and 2)

M 20

Iterations of contractive mappings

(Algorithm 3)

M 20

Points in x-space N 1024

Points in z-space (finite difference method) N/A 16
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C. Discontinuous longitudinally stepping algorithm

To account for the issues found in tracing the continu-

ous root locus near the resonant position, one can introduce

a discontinuity into the x-stepping algorithm. This is per-

formed by changing the initial value for the root-finding

algorithm near the resonant position, where the WKB

assumption breaks down. To do so, we seek a better guess

for a root near this position.

To begin, the term C in the root-finding problem [see

Eq. (77)] is approximated near the resonant position. Where

the stiffness and mass cancel, the admittance is YOC � 1=Rd,

a real conductance (where the d subscript denotes evaluation

near the resonant position), i.e., C is purely negative imagi-

nary. I define a new term c such that

c ¼ Rd

2qhx
2 R: (79)

The new problem to solve becomes

z tanh z ¼ �j

c
: (80)

The solution to this transcendental equation can be

approximated using the assumption that z is small in magni-

tude and lives close to the imaginary axis. This ensures that

the chosen value of k will correspond to the dominant mode,

falling off less rapidly than what would be found by tracing

the continuous root locus. A derivation of this solution,76

relying on Taylor expansions, is given in brief by

Viergever.21 It yields

kd �
p
2h

c� j
p
2h
ð1� c2Þ; c ¼ Rd

2qhx
: (81)

The discontinuous x-stepping algorithm traces the con-

tinuous root locus up to some xd at which it is determined

that the WKB assumption is being violated. This can be

determined before simulation21 or on the fly by observing

the rate of change of the wavenumber (in discrete space, the

finite difference) at each step. When the WKB assumption

holds, this rate should be small. Picking some threshold

T> 0, the x-stepping method is paused once

jk̂n � k̂n�1j=Dx > T.

After this point, kd of Eq. (81) is used as an initial step

in the root-finding algorithm. If jk̂n � k̂n�1j=Dx > T still

holds, then the WKB assumption is violated, and the pres-

sure at this position is set equal to its value at the last com-

puted position (pn ¼ pn�1). At each subsequent step, it is

determined whether k̂ satisfies this threshold—it will even-

tually do so, at which point we continue the locus-tracing

process along this second locus. Pseudocode for this algo-

rithm is presented in Algorithm 2.

D. The fixed point algorithm

One alternative to the longitudinally stepping class of

algorithms is a fixed point algorithm in which two distinct

relationships between k and a (the pressure focusing factor)

are used.13,63 The first such relationship is Eq. (52), which

gives a in terms of k. The second relationship, giving k in

terms of a, is Eq. (23). Any valid k value must satisfy both

equations.

Fixed point methods are based on the Banach fixed

point theorem,77 which states that repeated application of a

contractive function, g, will converge to a fixed point of said

function, i.e., a point where g(x)¼ x. Mathematical details

are omitted here for the sake of brevity.

The fixed point method for this problem works by starting

with the long-wave approximation at every frequency-location

pair, k̂ ¼ klw. Then, k̂ is plugged into Eq. (52) to find an the

approximate pressure focusing factor, â, and then â is plugged

into Eq. (23) to find a new wavenumber approximation, k̂. This

is repeated for some number of iterations. Pseudocode for this

algorithm is shown in Algorithm 3.

This method works under the assumption that it con-

verges to the correct value of k, which depends on the prop-

erties of the mappings between a and k. If the mappings are

not (at least locally) contractive, then no convergence is

guaranteed. On the other hand, if there are multiple fixed

points, certain choices of initial conditions may lead to con-

vergence to an undesired k. Performance of these three algo-

rithms will be discussed in Sec. VIII.

ALGORITHM 2. Longitudinally stepping root-finding algorithm to deter-

mine the wavenumber at N different x positions, accounting for the disconti-

nuity in the wavenumber.

k̂ ic  klwðx1Þ � Initialize using long-wave k

for n ¼ 1! N do � N is the number of steps in x space

z hk̂ ic

for m ¼ 1! M do

z zfðzÞf 0ðzÞ

� M is the number of Newton-Raphson

iterations

end for

if
jz=h�kic j

Dx < T then � Check for validity of WKB condition

k̂n  z=h � Initial value for next step is current

guess for kk̂ ic  kn

else

k̂n  NaN � Pressure and velocity should not be

computed here

k̂ ic  kd � Guess for k after the discontinuity

end if

end for

ALGORITHM 3. Fixed point algorithm that updates a vector of k̂ approxi-

mations by iteratively applying two relationships.

k̂  klw � Here, k̂ is a vector with an index for each position

for m ¼ 1! M do � M is the number of fixed point iterations

â  hk̂
tanh kh

� Pressure focusing vector update [Eq. (52)]

k̂  
ffiffiffiffiffiffiffiffiffiffiffiffi
�2jxqâ

hZOC

q
� Wavenumber update [Eq. (23)]

ifR½k̂ � < 0 then � Ensure the root is for an

apical-traveling wave (R gives the real part)k̂  �k̂

end if

end for

J. Acoust. Soc. Am. 155 (1), January 2024 Brian L. Frost 371

https://doi.org/10.1121/10.0024355

 29 August 2024 18:34:30

https://doi.org/10.1121/10.0024355


VIII. BEHAVIOR OF WKB APPROXIMATE SOLUTIONS

Having developed the WKB approximate solutions as

well as methods by which to find the wavenumber, it is now

possible to observe the behavior of the modeled solutions.

WKB solutions are compared to numerical results computed

using the finite difference method of Neely.19 Physical

quantities used here are from the 2-D box model of Steele

and Taber.27 These, along with parameters used in

wavenumber-finding algorithms, are provided in Table I.

Mass, resistance, and stiffness terms contribute to the

impedance according to

ZOCðxÞ ¼ jxmþ r þ sðxÞ
jx

; (82)

where x is in units of mm.

A. WKB solutions for the 1-D box model

In Sec. IV, I derived WKB solutions to the 1-D BVP up

to the zeroth [Eq. (34)] and first [Eq. (38)] orders. In Fig. 4,

these solutions are shown in response to a 2 kHz stimulus

frequency and compared to numerical results.

It can be observed that the zeroth-order approximation

overestimates the magnitude of the response near the peak

and exhibits more phase accumulation than the numerical

solution. On the other hand, the first-order WKB

approximation matches the numerical solution remarkably

well across space in phase and magnitude. The two orders of

solution differ only by a factor of
ffiffiffi
k
p

, which is real valued

for small x, explaining the similarity in phase.

B. Long-wave and short-wave solutions

To contextualize findings for the 2-D WKB solutions, it

is useful to observe the performance of the long- and short-

wave approximate solutions to the 2-D box model (see Sec.

V C as well as Refs. 3, 16, and 64). These solutions are valid

for regions of small real k and large real k, respectively, but

as k is complex valued and varies non-monotonically across

space/frequency (see Fig. 3), it is not immediately clear in

which regions these approximations will best match numeri-

cal solutions.

Figure 5 shows the long-wave and short-wave solutions

to the 2-D box model alongside a numerical solution. The

long-wave response matches the numerical solution well at

more basal positions, where the wavenumber is small and

real (Fig. 3), but poorly matches the numerical solutions

near or above the peak.

The short-wave solution matches the numerical solution

well only in a small spatial range near the peak. Neither

approximation matches the numerical solution past the peak

where the magnitude falloff in the numerical solution

becomes slower. This region is termed the cutoff region.22

FIG. 4. (Color online) Comparison of numerical solutions to the 1-D box

model with zeroth- and first-order WKB approximate solutions in response

to a 2 kHz stimulus.

FIG. 5. (Color online) Comparison of numerical solutions to the 2-D box

model with long- and short-wave approximate solutions in response to a

2 kHz stimulus.
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In the context of the root loci (Fig. 3), neither approximation

should be expected to hold well in the cutoff region, where

the roots approach the negative imaginary axis, as the

asymptotic forms of the hyperbolic tangent used in their der-

ivations are only valid for real argument. The short-wave

solution exhibiting a sign change in its group velocity just

past the peak, is one dramatic consequence of this

breakdown.

C. Performance of wavenumber-finding algorithms

Before comparing 2-D WKB approximations to numeri-

cal results, it is first important to assess the methods for

determining the wavenumber k in the 2-D case. This is per-

formed by observing velocity responses at the OCC derived

from the 2-D WKB approximation of Eq. (56), using

three methods for finding the wavenumber: (1) Algorithm 1,

an x-stepping algorithm that does not account for the

discontinuity, amounting to following a root locus as in Fig. 3;

(2) Algorithm 2, an x-stepping algorithm that does account for

discontinuity, via thresholding the finite difference as described

above; and (3) Algorithm 3, the fixed point method.

Figure 6 contrasts the x-stepping methods depending on

whether discontinuity is accounted for. The velocity

responses show identical behavior up to a position slightly

past the peak, where the finite difference in k becomes suffi-

ciently large such that a discontinuity is registered. After

this point, the falloff in velocity amplitude is slower than

that if the discontinuity were not considered. This slower

falloff is observed in the cutoff region of numerical results,

suggesting that the discontinuous method yields a more rea-

sonable choice for k past the peak.20,21,27,73 Comparison to

numerics is presented in Sec. VIII D.

Recall that these algorithms are designed to solve a

root-finding problem for function f of Eq. (76). The root loci

FIG. 6. (Color online) Simulated velocity of the OCC in response to a 5.5 kHz stimulus using the parameters of Table I. Left-hand panels show the magni-

tude and phase responses for velocity computed using the 2-D WKB solutions with the dispersion relation solved via x-stepping methods. The method

labeled as “discontinuous” accounts for the resonance by stopping computations when the derivative exceeds a threshold (Algorithm 2), and the method

labeled as “continuous” simply follows a continuous root locus (Algorithm 1). The followed loci are displayed in the top-right panel, where the dashed arrow

indicates the jump in the discontinuous method when entering the cutoff region. The bottom-right panel shows f(kh), which should be identically zero at

roots.
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for f in the upper-right panel of Fig. 6 show that for the

discontinuous method, the traversal of the locus is halted

as the root pattern begins to appear sparser (i.e., faster

change in k). As described in Sec. VII, the discontinuous

algorithm then assumes a small negative imaginary root

(transition shown by the dashed blue arrow), which yields

less rapid falloff in the cutoff region than the larger nega-

tive imaginary component found by following the locus

continuously.

The bottom-right panel of Fig. 6 serves to show that the

two methods are correctly converging to roots of f at each

given x. Using both methods, the value of f(kh) is less than

10�10 in magnitude at all x—this stresses the fact that not all

roots lie on the same continuous locus.

Figure 7 shows these same results but now alongside

the results obtained via the fixed point method (Algorithm

3). These results show similar behavior in velocity magni-

tude to the continuous x-stepping solution, but the phase

accumulates more cycles.

Observation of the root locus and f(kh) for the fixed

point algorithm reveals strange behavior in the cutoff

region. While the fixed point method’s root locus follows

that of the x-stepping method for a large range of x, it errati-

cally jumps around the complex plane (including to the third

quadrant) past the peak. This corresponds to a nonzero value

of f(kh) at these positions as well (see the bottom-right panel

of Fig. 7), showing that Algorithm 3 has not correctly con-

verged to a root of the function.

This is anecdotal justification of the validity of this method

in the long-wave and short-wave regions but not in the cutoff

region—a drawback of the fixed point method. The failure of

the fixed point algorithm to converge in the cutoff region has

been noted before, e.g., in Appendix D of Ref. 63. Still, because

of the relative speed of this method’s convergence and the fact

that it does not need a fine resolution for x, it has experienced

use in many modern works where performance in the cutoff

reason is not critical to model results.31,41,63

D. WKB solutions for the 2-D box model

In Sec. VIII C, it was shown that the wavenumber-

finding algorithm that accounts for discontinuities in k con-

verges to roots across space and yields velocity responses

that qualitatively resemble numerical results past the peak.

This informs the choice to use this algorithm for comparison

to numerical results.

In Sec. V, two WKB approximate solutions were pre-

sented—the lower-order solution of Eq. (55) and the higher-

order solution of Eq. (56). Figure 8 shows solutions

FIG. 7. (Color online) Same as that in Fig. 6 but also including the results of the fixed point algorithm as yellow curves in each subplot. Points to note about

the fixed point algorithm include the erratic behavior of the root loci and failure to converge to a proper root near the transition between the peak and cutoff

regions. Black arrows in the velocity response plots indicate positions at which this erratic behavior occurs.
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according to both of these equations alongside numerical

solutions to the 2-D BVP.

Both approximate solutions resemble the numerical

solutions across space, including at positions past the

peak where the slope of the response rapidly changes.

This contrasts with the approximate solutions derived

from the two alternate root-finding methods, as observed

in Fig. 7.

The lower-order solution slightly overestimates tuning

at the peak as compared to the higher-order solution, but

the solutions are otherwise nearly identical. They differ

most significantly from numerical solutions in their phase

responses. Although they are characteristically similar,

both approximate solutions lead the numerical solutions

by about 0.1 cycles at apical positions where the phase

varies slowly.

It is important to note that these results are sensitive to

the choice of threshold, T, in Algorithm 2. A large threshold

leads to a registration of a discontinuity at a more apical

position. This means that the slopes of the magnitude and

phase will change at a more apical location than in the

numerical solution. Similarly, a lower value of T will move

the discontinuity further basal. For reasonable values of T,

WKB solutions will be qualitatively similar to numerical

solutions in magnitude and phase slopes, but they may differ

quantitatively as a result of the shift in the position at which

the discontinuity is registered.

IX. CONCLUSIONS

The WKB approximation provides compact closed-

form approximate solutions for 1-D and 2-D cochlear mac-

romechanic models that match numerical solutions well

within the entire region of response (all x’s and x’s) except

a small region near the resonant position/frequency. These

solutions are easily implemented and interpreted and allow

qualitative and quantitative insight into the manner by which

physical parameters (impedance variations, scala area, etc.)

alter the apical-traveling wave. Through the method of

WKB wave-space projection, the solutions also facilitate

further interpretation of modeled responses as a superposi-

tion of apical- and basal-traveling waves, allowing for the

study of intracochlear reflections and OAEs.

The forms of the WKB approximate solutions for

cochlear box models were developed decades ago, thus, one

may reasonably ask: what is the importance of WKB

approximate solutions in contemporary times? In fact, many

important insights have been gleamed from WKB solutions

in recent literature. Below are just a few such contributions

from the past three years.

The inclusion of spatially varying scala dimensions to a

2-D box model as that in Eq. (55) has been shown by Altoè

and Shera to be important for the achievement of substantial

OCC velocity at the apex in response to stimuli at the base.63

They analyzed how tapering scala height could introduce an

amplification factor that boosts responses at the apex relative

to a uniform-height model, resolving losses that occur in the

traveling wave as it makes its way to the apex.

Recent micromechanical findings made through optical

coherence tomography have also inspired applications of the

WKB solutions to the ostensibly macromechanical box

model. In particular, motion at the outer hair cell-Deiters cell

junction in the organ of Corti appears to move about 90
 out

of phase with basilar membrane motion within the same lon-

gitudinal cross section. Implementing this as a modification

to the impedance term, Altoè and Shera have used the WKB

solutions as derived in this tutorial to model the impact of

such a phenomenon.41 They arrive at an alternative interpre-

tation of cochlear amplification, in which power may be sup-

plied to the fluid rather than directly to the basilar membrane.

Recent work by Sisto et al. used the WKB approxima-

tion in studying the level dependence of the OCC admit-

tance, assumed to arise from outer hair cell motility.29,30

Paying special attention to (a) the pressure focusing phe-

nomenon described above and (b) the viscosity at the

OCC–fluid interface, they have found that substantially

level-dependent admittance is not required to obtain the

impressive dynamic range of the cochlea.

With much still to learn about the mechanics of the

cochlea, the powerful analytic tool offered by the WKB

approximation is among the strongest we have because

of its interpretability, versatility, and simplicity of com-

putation. With the foundations discussed in this tutorial,

derivations and implementation details can be modified to

tackle contemporary questions as they continue to arise.

FIG. 8. (Color online) Comparison of numerical solutions to the 2-D box

model with lower-order [Eq. (55)] and higher-order [Eq. (56)] WKB

approximate solutions in response to a 2 kHz stimulus.
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APPENDIX: THE HIGHER-ORDER 2-D MODEL—A
SERIES SOLUTION APPROACH

In this appendix, I provide a derivation of the higher-

order “WKB solution” of Eq. (56). The following approach

is modified from that of Viergever in his 1980 book,

Mechanics of the Inner Ear: A Mathematical Approach.21 It

relies on a transformation of the coordinates of the pressure

BVP and subsequent application of a WKB-adjacent ansatz

(but not precisely the WKB method).

The method consists of the following steps:

(1) Change the variables of the BVP in pressure such that

terms relating to the model parameters appear in the

PDE rather than only in the boundary conditions; and

(2) write a form for the solution to this new PDE as

Aðx; fÞcosh jðxÞðH � fÞ½ �ejKgðxÞ:

That is, assume that the z (here, reparameterized as f)

contribution is hyperbolic and there is a wave in x. The

product with arbitrary A(x,y) means this is performed

without loss of generality.

(3) Assume a series solution for A and plug it into the ODE

to obtain a system of PDEs; and

(4) solve for A up to first order, plug back into the

ansatz, and undo the change of variables to solve for

pressure.

A detailed outline is presented below, but certain steps

feature highly nontrivial computations. Full exposition of

these computations is available online.78

1. Setting up the BVP

The method followed in this section relies on multiple

changes of variables and definitions of new parameters. As

such, it can be difficult to keep straight the meanings and units

of the various variables and parameters at play. Table II serves

as a reference for the objects introduced in the derivation.

Viergever begins with the 2-D box model Laplace equa-

tion BVP in P(x,z), and then performs a change of variables.

To start, we define a reference impedance, Z0, which is

some arbitrary constant. We also define f 2ðxÞ ¼ Z0=ZOCðxÞ
and a reference wavenumber, K2 ¼ �2jxq=hZ0. Recalling

that P ¼ �q _/, the boundary condition at the OCC is

@P

@z
þ hK2f 2ðxÞP ¼ 0; z ¼ 0: (A1)

Note that K is not a function of x.

Further reparameterizing the z coordinate and defining a

reparameterized pressure, Q, as

f ¼ Kz; H ¼ Kh; Qðx; fÞ ¼ Pðx; zÞ; (A2)

the BVP in terms of Q is

@2Q

@x2
þ K2 @

2Q

@f2
¼ 0; (A3)

@Q

@f

����
f¼H

¼ 0; (A4)

@Q

@f

����
f¼0

þ Hf 2ðxÞQðx; 0Þ ¼ 0: (A5)

The solution to the above PDE is artificially represented

in a form resembling what the solutions are expected to be

by intuition about the solutions of the Laplace equation. In

particular, Q is written as

Qðx; fÞ ¼ Aðx; f; KÞejKgðxÞcosh jðxÞðH � fÞ½ �: (A6)

The exponential suggests a traveling wave in x, where

A modulates the amplitude of this wave. However, this is

TABLE II. Symbols introduced in the derivation of the model equations in the series solution approach along with their significance and units.

Symbol Significance Units

Z0 Arbitrary reference impedance used to the simplify series solution Pa s/mm

K Reference wavenumber used to simplify the series solution 1/mm

f 2ðxÞ Z0=ZOCðxÞ, used so simplify x-dependence of the PDE Unitless

f Kz, Nondimensionalized transverse coordinate Unitless

H Kh, Nondimensionalized scala height Unitless

Qðx; fÞ Pressure written in terms of the nondimensionalized transverse coordinate Pa

Aðx; fÞ Auxiliary pressure variable that controls the magnitude of pressure at the OCC, to be solved for in the simplified BVP Pa

jðxÞ Controls the x-dependence of transverse pressure variations, to be solved for in the simplified BVP Unitless

g(x) Controls the wavenumber of the traveling wave, to be solved for in the simplified BVP mm
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not actually an assumption of a wave solution—as A, g, and

j are unknown functions of x and f, any function can be rep-

resented in this fashion without loss of generality.

One might wonder why we have chosen to introduce so

many new terms into these equations. Although this may

initially seem to complicate the BVP, it eventually leads to

the most mathematically tractable solution method.

Alongside Table II, it may help to “look into the future”

to see what these newly defined variables will become. The

variable j will be found to be the nondimensionalized wave-

number and g will be found to be the integral of the wavenum-

ber. The free parameter K will eventually be the variable of

our formal power series [similar to d from Eq. (2)].

Plugging this form of Q into the BVP, we can find an

equivalent BVP in terms of A. Writing aðx; fÞ ¼ jðxÞðH � fÞ
to simplify notation, we arrive at the following PDE and bound-

ary conditions:

K2 ðj2 � g02ÞA cosh aþ @
2A

@f2
cosh a� 2j

@A

@f
sinh a

" #

þ jK g00A cosh aþ 2g0
@A cosh a

@x

� �
þ @

2A cosh a

@x2
¼ 0;

(A7)

@A

@f

����
f¼0

� jAðx; 0Þtanh aðx; 0Þ þ Hf 2Aðx; 0Þ ¼ 0; (A8)

@A

@f

����
f¼H

¼ 0: (A9)

Solving this ODE in the auxiliary pressure, A, is the new

goal. With a solution for A, we can find Q and, finally, P.

2. A series solution for auxiliary pressure

A formal power series solution in the form

Aðx; f; KÞ ¼ A0ðxÞ þ
X1
n¼1

1

ðjKÞn Anðx; fÞ (A10)

is assumed with monotonic decrease in magnitude of terms

and their derivatives in increasing n, and allows for termwise

differentiation. This form of the solution is not quite the WKB

ansatz, but it is the logarithm of such a solution with d ¼ jK.

This is motivated by Keller’s approach to surface waves.62

This ansatz is plugged into the PDE for A in Eq. (A7),

resulting in a system of infinitely many PDEs of which we

consider only the PDEs that include A0 and A1 (justified by the

assumption that the terms and their derivatives decrease mono-

tonically). The resulting system of differential equations is

g02ðxÞ ¼ j2ðxÞ; (A11)

cosh a
@2A1

@f2
� 2j sinh a

@A1

@f

¼ g00A0cosh aþ 2g0
@A0cosh a

@x
: (A12)

Application of boundary conditions results in

@A1

@f

����
f¼H

¼ 0; (A13)

@A1

@f

����
f¼0

¼ 0; (A14)

j tanh jH ¼ Hf 2: (A15)

Equation (A15) resembles the dispersion relation derived

from the WKB method in Sec. V.

Equation (A11) is solved by

gðxÞ ¼ 6

ðx

0

jðnÞdnþ C (A16)

for arbitrary constant C. This resembles the characteristic

WKB phase term.

3. Finding a first approximation for pressure

Solving Eq (A12) is nontrivial as it contains A0 and A1.

Solution for A0 requires clever substitutions.78 I find

A0 ¼ CðjH þ sinh jH cosh jHÞ�1=2
(A17)

for arbitrary C.

Theoretically, this facilitates solution for An for any n as

well. On the other hand, the series approximation concludes

that the higher n terms should be small if K is large relative to

its own rate of change (analogous to the WKB assumption).

Ignoring An for n � 1 gives a first approximation for Q
by putting A � A0. Using Eq. (A16) for g, there are two pos-

sible solutions:

Q6ðx; fÞ ¼ C6ðjH þ sinh jH cosh jHÞ�1=2

� e
6jK
Ð x

0
jðnÞdn

cosh jðxÞðH � fÞ½ � þ Oð1=KÞ:
(A18)

The reference constant, K, was defined as

K2 ¼ �2jqx=hZ0, where Z0 was a second reference con-

stant such that f 2 ¼ Z0YOC. Because Z0 was entirely arbi-

trary, I am free to choose Z0 ¼ �2jqxh�1 such that

K¼ 1 mm�1. This also gives H¼ 1 mm�1 � h [unitless],

f¼ 1 mm�1 � z [unitless] and Q¼P (Pa).

I define k¼ 1 mm �1 � j. In this light, the j relation

from Eq. (A15) becomes

k tanh kh ¼ �2jqxYOC: (A19)

This is precisely the dispersion relation derived through the

WKB method [Eq. (49)], where k is the wavenumber with

units mm�1.

The first approximation for pressure with arbitrary con-

stants, C6, is now

Pðx; zÞ ¼ ðkhþ sinh kh cosh khÞ�1=2
cosh kðxÞðh� zÞ½ �

� Cþe
j
Ð x

0
kðnÞdn þ C�e

�j
Ð x

0
kðnÞdn

h i
: (A20)

To find the constants, the two x-boundary conditions

are used:
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1

h

ðh

0

Pð0; zÞdz ¼ POW ;
@P

@x

����
x¼L

¼ 0; (A21)

where L is the length of the cochlea, and POW is the average

pressure at the stapes.

After some computation,79 assuming that the backward

traveling wave is negligible, we achieve

Pðx; zÞ ¼ POWk0h

cosh kðxÞh tanh k0h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0h sech2k0hþ tanh k0h

kðxÞh sech2kðxÞhþ tanh kðxÞh

s

� cosh kðxÞðh� zÞ½ �e�j
Ð x

0
kðnÞdn

: (A22)

This is precisely Eq. (56).
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